中國品牌,讓東南亞感受“消費升級”小紅書本地“坐抖望團”CrowdStrike“全球滅霸響指”事件后續(xù),德國 10% 企業(yè)更換安全供應商導致 1TB 數(shù)據(jù)泄露后,迪士尼宣布棄用 Slack 平臺合合信息啟信產(chǎn)業(yè)大腦攜手市北新區(qū)打造“一企一畫像”平臺,加速數(shù)字化轉(zhuǎn)型重慶:力爭今年智能網(wǎng)聯(lián)新能源汽車產(chǎn)量突破 100 萬輛,到 2027 年建成萬億級產(chǎn)業(yè)集群微信iOS最新版上線:iPhone用戶可在朋友圈發(fā)實況照片了蘋果有線耳機或?qū)⑼.a(chǎn)沖上熱搜!閑魚相關(guān)搜索量暴漲384%2024 vivo開發(fā)者大會官宣:OriginOS 5/自研藍河系統(tǒng)2降臨真·AI程序員來了,阿里云「通義靈碼」全面進化,全流程開發(fā)僅用幾分鐘東方甄選烤腸全網(wǎng)銷量及銷售額領(lǐng)先鴻蒙PC要來了 界面很漂亮!余承東:目前華為PC將是最后一批搭載Windows上半年中國AR/VR出貨23.3萬臺,同比下滑了 29.1%IDC:2024 上半年中國 AR / VR 頭顯出貨 23.3 萬臺,同比下滑 29.1%英特爾AI加速器Gaudi3下周發(fā)布,挑戰(zhàn)NVIDIA統(tǒng)治地位!大屏技術(shù)邂逅千年色彩美學!海信激光電視成為電影《只此青綠》官方合作伙伴OpenAI將最新AI模型o1擴展到企業(yè)和教育領(lǐng)域三星新專利探索AR技術(shù)新應用:檢測屏幕指紋殘留,提高手機安全性猛瑪傳奇C1:直播圖傳技術(shù)的革新者JFrog推出首個運行時安全解決方案,實現(xiàn)從代碼到云的全面軟件完整性和可追溯性
  • 首頁 > 網(wǎng)絡通信頻道 > 移動互聯(lián)

    子帶全雙工 5G夢想的妥協(xié)?

    2022年12月19日 18:09:37   來源:無線深海

      大家好,我是蜉蝣君。

      本期我們來聊聊一個無線通信領(lǐng)域最基本的話題:雙工。

      所謂雙工,是指兩臺通信設備之間,可以進行雙向的數(shù)據(jù)傳輸。具體來說,雙工技術(shù)包含全雙工和半雙工這兩種模式。

      全雙工是指雙向的數(shù)據(jù)傳輸可同時進行。也就是說,通信雙方都可以在發(fā)送數(shù)據(jù)的同時也在接收對方發(fā)來的數(shù)據(jù),收發(fā)并行兩不誤。

      半雙工可就簡陋地多了,收發(fā)不能同時進行,只能輪流進行:發(fā)的時候不能收,收的時候不能發(fā)。我們常見的對講機就是這樣的模式。

      全雙工,我們用上了嗎?

      移動通信技術(shù)經(jīng)過5代的發(fā)展,可以說已經(jīng)臻于至善了。那么,我們的基站和手機在交互時,用的必然是全雙工吧?

      這個時候,我們最常用的兩個術(shù)語是:FDD(頻分雙工)和TDD(時分雙工)。那么,它們到底是全雙工和半雙工呢?

      對于FDD來說,我們使用兩段頻譜,一段專門用作基站給手機發(fā)送信號,也叫做下行;另一段則專門用作手機給基站發(fā)送信號,也叫做上行。為了防止下行和上行之間的干擾,使用的這兩段頻譜之間還必須留有一定的隔離帶,這叫做“雙工帶寬”。

      由此可見,F(xiàn)DD的下行和上行這兩條鏈路都是半雙工的,它們組合起來,以頻譜資源占用翻倍為代價,形成了一個“偽全雙工”系統(tǒng)。這就像馬路上的車道一樣,每條車道只能是單向的,但不同方向的車道組合起來,就可以實現(xiàn)雙向通行。

      對于TDD來說,頻譜確實僅需占用一段,但上行和下行只能輪流使用。也就是說,基站在發(fā)送數(shù)據(jù)的時候,手機只能靜靜地接收,想發(fā)送數(shù)據(jù)也只能憋著,等分給你的發(fā)送時間到了才行。

      這不就是貨真價實的半雙工么?我們常用的5G頻段都是TDD模式的,只是上下行之間切換的時間極短,是毫秒級的,我們根本感受不到。所以說,TDD是用微觀上快速切換的半雙工來實現(xiàn)宏觀上的“偽全雙工”。

      我們難道就不能在同一段頻譜上同時進行收發(fā),實現(xiàn)真正的“同時同頻全雙工”嗎?這樣一來,頻譜效率直接翻倍啊!國安民樂,豈不美哉?

      然而,這么多年大家都能看得出的問題還一直懸而未決,其中必然是有著極難解決的巨大困難。

      要實現(xiàn)全雙工,無異于兩列火車在同一條鐵軌上朝對向高速行駛,其結(jié)果不言而喻。

      之所以如此,是因為在同一頻段內(nèi)同時收發(fā),就會產(chǎn)生巨大的干擾。這不但包含基站自身發(fā)送對自身接收的自干擾,還有基站和基站之間的干擾、基站和手機之間的干擾、手機和手機之間的干擾,這些交叉鏈路干擾處理起來異常棘手。

      因此,大家都只能將主要精力放在增加車道上,把使用的頻段不斷推高,載波帶寬不斷擴寬,收發(fā)通道數(shù)不斷倍增。

      比如,從2G到5G,使用的頻段從低頻(小于1GHz)到中頻(小于6GHz),再到毫米波甚至太赫茲,信道帶寬也隨之從幾兆擴展到幾十M、上百M甚至上G;收發(fā)通道數(shù)也從單通道到雙通道、4通道、8通道、32通道、64通道甚至128通道。

      至于全雙工技術(shù),雖說在5G的標準化初期被廣泛討論,并被認為是5G的關(guān)鍵技術(shù)之一,但最終卻因?qū)崿F(xiàn)困難而被束之高閣。

      讓無線通信用上真正的全雙工,成了通信人深埋心底的最大夢想。

      現(xiàn)實的妥協(xié):子帶全雙工

      斗轉(zhuǎn)星移,目前5G已商用數(shù)年,5G下半場的技術(shù)標準:5G-Advanced標準正在緊鑼密鼓地制定中。

      全雙工,再次進入了大家的視野。

      這是因為,隨著5G行業(yè)應用向工業(yè)現(xiàn)場網(wǎng)的滲透,網(wǎng)絡同時支持超大上行帶寬和超低時延的需求凸顯,目前的FDD和TDD模式都難以招架。

      比如,工廠里面的視頻監(jiān)控、電子圍欄、機器視覺等應用都是大上行業(yè)務為主,多個終端的帶寬需求從幾百Mbps甚至上Gbps;工業(yè)AR需要時延小于10毫秒,AGV協(xié)同搬運需要時延小于5毫秒,機器運動控制需要時延小于4毫秒。

      為什么不論是當前的FDD和TDD模式都難以同時滿足大帶寬和低時延需求?下面我們來說一說。

      由于頻譜的使用劃分在歷史上早已確定,不將當前已應用的系統(tǒng)全部下線就沒法更改,因此不同的頻段頻段實際上是和FDD或者TDD雙工模式強綁定的。

      頻段和雙工模式之間的綁定關(guān)系

      FDD頻段的特點是頻段低,可用帶寬少,能提供的速率有限。比如,900M上下行各有35M帶寬,1800M上下行各有75M帶寬,這些為數(shù)不多的寶貴資源還要分給多家運營商,每家能用的就更是捉襟見肘,覆蓋雖好但網(wǎng)速上不去。

      雖說速率有限,但FDD模式有一個突出的優(yōu)點,那就是上下行數(shù)據(jù)在各自獨立的頻譜上發(fā)送,基本上可以做到有數(shù)據(jù)就可以發(fā)送,不用像TDD那樣要卡時間,所以FDD可以實現(xiàn)比較短的時延。

      TDD頻譜則相反,頻段普遍較高,可用帶寬大。比如在3.5GHz上,聯(lián)通和電信就各有100M帶寬;在2.6GHz上,移動則獨享160M帶寬。

      這些TDD大帶寬載波通過設置不同的上下行時隙配比,可以實現(xiàn)上行或者下行高速率,但受限于TDD本身的半雙工特點,時延難以降低。

      雖說我們不太能感受到時延帶來的影響,但工廠里面的機器間通信對此異常敏感。并且如此苛刻的時延要求還是剛性的,達不到就沒法工作。

      如果能把TDD和FDD的優(yōu)勢融合在同一個頻段內(nèi),不就能同時支持大帶寬和低時延了嗎?

      于是就有人想到,你TDD頻譜的帶寬不是大么?我就在TDD載波內(nèi)部再切上一刀劃分成兩段子頻段(稱之為子帶),兩個子帶還都是TDD模式,但上下行時間的配置相反。這樣一來,你發(fā)送時我接收,你接收時我發(fā)送,這不就擁有了FDD的氣質(zhì)了嗎?

      這樣一來,我們就可以以較小的代價,就通過子帶劃分和時隙配置,在TDD載波內(nèi)融合了FDD的技術(shù),也就實現(xiàn)了TDD載波內(nèi)的偽“全雙工”。

      TDD和子帶全雙工

      然而這樣的偽“全雙工”本質(zhì)上是TDD和FDD技術(shù)的縫合,實際并沒有實現(xiàn)頻譜效率的提升,只是實現(xiàn)全雙工這個萬里長征的一小步探索,因此它就被叫做“子帶全雙工”,簡稱SBFD(Subband Full Duplex)。

      子帶怎樣劃分?

      從純技術(shù)的角度來說,上下行怎樣劃分都行,可以各占一半,這樣上下行速率是平衡的;也可以下行子帶多劃一些,這樣就能實現(xiàn)大下行速率;也可以上行子帶多劃一些,這樣就能實現(xiàn)大上行速率。

      從需求來看,我們普羅大眾刷視頻需要的是大下行速率,但對時延要求其實并不高,對子帶全雙工沒啥需求;而在工廠里,數(shù)據(jù)上報、監(jiān)控攝像頭、機器視覺等應用需要大上行,同時大量控制類應用需要低時延,因此子帶全雙工在工業(yè)場景是有用的,需配置為以上行子帶為主。

      至于需要劃分幾個子帶,從使用角度兩個就夠了,但實際這個主要看干擾情況。

      如果要部署子帶全雙工的運營商的頻譜和其他運營商相鄰,那相鄰的頻譜最好保持原樣以下行為主,那就盡量把上行子帶放得遠一些,這樣能最大化減少干擾。

      具體來說,如果頻譜兩邊都有相鄰運營商的頻譜,則建議劃分兩個下行子帶和一個上行子帶,并把上行子帶放在中間,按照下行+上行+下行的三明治方式配置;如果只有一邊有其他運營商,那劃分一個下行子帶和一個上行子帶就可以了,這樣效果更好。

      “三明治”形式劃分的上下行子帶

      在幀結(jié)構(gòu)的上,為了兼容已有的終端,可以保持DFFFU的傳統(tǒng)幀結(jié)構(gòu),第一個時隙為全下行,中間的三個時隙配置子帶并按需進行上下行靈活調(diào)度,第三個時隙為全上行。

      上下兩個子帶的兩種配置

      干擾怎樣消除?

      系統(tǒng)內(nèi)的自干擾,是子帶全雙工必須解決的核心問題。

      由于子帶全雙工的上下行的子帶是緊密挨著的,并不像傳統(tǒng)的FDD的上下行頻段那樣有幾十M的雙工間隔,這會導致嚴重的收發(fā)間干擾。

      一般情況下,基站的信號發(fā)送和接收是共用天線的,發(fā)射出去的強信號又會直接被接收進來,導致本應接收的來自手機的微弱信號被淹沒阻塞。另外,在基站內(nèi)部處理時,射頻收發(fā)鏈路之間也會產(chǎn)生耦合干擾。

      自干擾抑制有空間域、射頻域、數(shù)字域等手段,多管齊下,多級消除。

      空間域、射頻域和數(shù)字域自干擾消除

      空間域自干擾抑制最簡單的手段是收發(fā)天線分離。發(fā)射和接收通過使用各自獨立的天線,并在兩個天線之間增加多個隔離柵,可有效阻止發(fā)射信號進入接收天線。再加上發(fā)射天線在接收天線方向的波束零陷技術(shù),可進一步降低干擾。

      收發(fā)高隔離度天線

      射頻域干擾抑制有兩種方式:子帶濾波器和射頻干擾消除。

      通過在基站內(nèi)增加子帶濾波器,下行子帶可通過濾波器濾除上行子帶的信號,上行子帶通過濾波器濾除下行子帶的信號。這種方式相對比較簡單,但調(diào)整濾波器帶寬不靈活,且會增加插損。

      射頻干擾消除是通過采集已知的下行發(fā)射信號的一個副本并傳給上行接收端,再通過構(gòu)造與之相反的信號進行抵消。這種方式比較復雜,成本高。

      射頻干擾抵消

      射頻域干擾抑制在具體實現(xiàn)時,可以通過評估需要的干擾抑制能力,選擇一種方式或者兩種方式組合實現(xiàn)。

      數(shù)字域干擾抑制和射頻域的第二種干擾抑制的思路類似。通過在射頻域引入一路輔助射頻通道并將其轉(zhuǎn)換成數(shù)字信號,再在數(shù)字域構(gòu)造與之相反的信號進行抵消,進一步降低殘余干擾。

      通過空間域、射頻域、數(shù)字域這三級的自干擾消除,就可以將自干擾抑制到靈敏度稍有降低但可接受的水平。

      解決了自干擾,也就是單個基站自己能正常工作了,但實際部署時不可能僅有一個基站一個終端,而是多個基站要組成網(wǎng)絡,同時服務多個不同的終端。這就涉及到更為棘手的問題:交叉鏈路干擾。

      交叉鏈路干擾的消除,就需要設計對應的干擾測量機制,做到知己知彼,并傳遞已知的干擾特征,然后再通過波束零陷 、干擾抑制合并等技術(shù)進行干擾消除。這個過程比單個基站內(nèi)的子干擾消除要復雜,目前業(yè)界還在研究中。

      為了能順利地邁出第一步,我們應該從由易到難,循序漸進。首先,我們可以在智能工廠部署子帶全雙工微站,功率較小,和室外宏站的隔離相對容易一些。

      后續(xù),我們再考慮多個子帶全雙工基站之間的組網(wǎng),最后我們再嘗試去解決子帶全雙工宏站和現(xiàn)網(wǎng)大下行宏站之間的組網(wǎng)。隨著組網(wǎng)干擾問題解決的進展,產(chǎn)業(yè)生態(tài)也就順利成章地成熟了。

      標準化之路

      子帶全雙工已在3GPP R18立項,目前正處于SI(Study Item)階段,理論和工程技術(shù)研究已全面展開。

      中國移動牽頭子帶全雙工技術(shù)的標準化,并將其打包到了UDD(Unified Division Duplex,統(tǒng)一雙工)系列技術(shù)中。其中S-UDD(Single carrier UDD,單載波UDD)就指的是子帶全雙工。三星也類似,將該技術(shù)包裝成了XDD(cross division duplex,交叉雙工)。

      雖說目前的研究已經(jīng)取得了一定的進展,但該技術(shù)離正式商用還比較遙遠。按照R18研究,R19標準化的節(jié)奏,相關(guān)協(xié)議預計要到2025年才會凍結(jié),商用預計要到2026年以后了。

      2026年,距離6G也就僅剩三年時間。因此,要順利推進實現(xiàn)子帶全雙工技術(shù)的商用,必須著重考慮對現(xiàn)有終端的兼容。因為基站側(cè)的升級改造通常比較容易推動,而終端產(chǎn)業(yè)鏈的普及則要更為滯后一些。

      在實現(xiàn)了上述子帶不交疊的子帶全雙工之后,我們可以更進一步,讓子帶之間有所交疊,研究怎樣讓交疊之處的少量頻譜可以做同時同頻全雙工。再下一步,我們將推進整個載波向同時同頻全雙工邁進。這是個一步一個腳印的過程。

      無論如何,子帶全雙工都將作為通向同時同頻全雙工的重要里程碑,在5G和6G的時代之交發(fā)揮承前啟后的價值。

      FDD和TDD之別,最終將成為歷史的煙塵。

      文章內(nèi)容僅供閱讀,不構(gòu)成投資建議,請謹慎對待。投資者據(jù)此操作,風險自擔。

    即時

    TCL實業(yè)榮獲IFA2024多項大獎,展示全球科技創(chuàng)新力量

    近日,德國柏林國際電子消費品展覽會(IFA2024)隆重舉辦。憑借在核心技術(shù)、產(chǎn)品設計及應用方面的創(chuàng)新變革,全球領(lǐng)先的智能終端企業(yè)TCL實業(yè)成功斬獲兩項“IFA全球產(chǎn)品設計創(chuàng)新大獎”金獎,有力證明了其在全球市場的強大影響力。

    新聞

    敢闖技術(shù)無人區(qū) TCL實業(yè)斬獲多項AWE 2024艾普蘭獎

    近日,中國家電及消費電子博覽會(AWE 2024)隆重開幕。全球領(lǐng)先的智能終端企業(yè)TCL實業(yè)攜多款創(chuàng)新技術(shù)和新品亮相,以敢為精神勇闖技術(shù)無人區(qū),斬獲四項AWE 2024艾普蘭大獎。

    企業(yè)IT

    重慶創(chuàng)新公積金應用,“區(qū)塊鏈+政務服務”顯成效

    “以前都要去窗口辦,一套流程下來都要半個月了,現(xiàn)在方便多了!”打開“重慶公積金”微信小程序,按照提示流程提交相關(guān)材料,僅幾秒鐘,重慶市民曾某的賬戶就打進了21600元。

    3C消費

    “純臻4K 視界煥新”——愛普生4K 3LCD 激光工程投影

    2024年3月12日,由愛普生舉辦的主題為“純臻4K 視界煥新”新品發(fā)布會在上海盛大舉行。

    研究

    2024全球開發(fā)者先鋒大會即將開幕

    由世界人工智能大會組委會、上海市經(jīng)信委、徐匯區(qū)政府、臨港新片區(qū)管委會共同指導,由上海市人工智能行業(yè)協(xié)會聯(lián)合上海人工智能實驗室、上海臨港經(jīng)濟發(fā)展(集團)有限公司、開放原子開源基金會主辦的“2024全球開發(fā)者先鋒大會”,將于2024年3月23日至24日舉辦。