經(jīng)過多年的發(fā)展,自動(dòng)駕駛已經(jīng)經(jīng)歷了以硬件驅(qū)動(dòng)為主的 1.0 時(shí)代、以軟件驅(qū)動(dòng)的 2.0 時(shí)代,并正在進(jìn)入將持續(xù)發(fā)展的由數(shù)據(jù)驅(qū)動(dòng)的自動(dòng)駕駛3.0時(shí)代。隨之而來的是,自動(dòng)駕駛已經(jīng)成為了汽車產(chǎn)業(yè)中最熱門的賽道之一,而在量產(chǎn)自動(dòng)駕駛領(lǐng)域的競爭更是進(jìn)入到了白熱化的階段。
在以數(shù)據(jù)驅(qū)動(dòng)為主的自動(dòng)駕駛3.0時(shí)代,最重要的是如何快速處理自動(dòng)駕駛車輛在日常的運(yùn)行和測試過程中產(chǎn)生的還量數(shù)據(jù)。尤其是城市輔助導(dǎo)航駕駛,某種意義上說,城市道路輔助駕駛系統(tǒng)要解決的問題難度,并不低于L4級自動(dòng)駕駛,這就要求自動(dòng)駕駛企業(yè)需要具備很強(qiáng)的數(shù)據(jù)處理能力。
為此特斯拉直接建設(shè)了一個(gè)智算中心來處理海量的數(shù)據(jù),而近日,國內(nèi)自動(dòng)駕駛公司毫末智行也宣布成立智算中心——雪湖 · 綠洲(MANA OASIS),該智算中心由毫末智行和火山引擎聯(lián)合打造,是國內(nèi)自動(dòng)駕駛行業(yè)最大的智算中心。
在MANA OASIS的加持下,毫末智行推出的中國首個(gè)自動(dòng)駕駛數(shù)據(jù)智能體系MANA五大模型迎來全新亮相升級。
首先,視頻自監(jiān)督大模型,讓毫末4D Clip標(biāo)注實(shí)現(xiàn)100%自動(dòng)化,人工標(biāo)注成本降低98%。為了更低成本、更高效獲取更多高價(jià)值數(shù)據(jù),需要解決從離散幀自動(dòng)化擴(kuò)充到Clips形態(tài)的問題。毫末首先利用海量videoClip,通過視頻自監(jiān)督方式,預(yù)訓(xùn)練出一個(gè)大模型,用少量人工標(biāo)注好的Clip數(shù)據(jù)進(jìn)行Finetune(微調(diào)),訓(xùn)練檢測跟蹤模型,使得模型具備自動(dòng)標(biāo)注的能力;然后,將已經(jīng)標(biāo)注好的千萬級單幀數(shù)據(jù)所對應(yīng)的原始視頻提取出來組織成Clip,其中10%是標(biāo)注幀,90%是未標(biāo)注幀,再將這些Clip輸入到模型,完成對90%未標(biāo)注幀的自動(dòng)標(biāo)注,進(jìn)而實(shí)現(xiàn)所有單幀標(biāo)注向Clip標(biāo)注的100%的自動(dòng)轉(zhuǎn)化,同時(shí)降低98%的Clip標(biāo)注成本。毫末視頻自監(jiān)督大模型的泛化性效果極佳,即使是在一些非常困難的場景,例如嚴(yán)重遮擋的騎行者,遠(yuǎn)處的小目標(biāo),惡劣的天氣和光照,都能準(zhǔn)確地完成自動(dòng)標(biāo)注。
其次,3D重建大模型,讓毫末實(shí)現(xiàn)了數(shù)據(jù)“無中生有”,獲得海量corner case(長尾場景)不再是難事。面對“完全從真實(shí)數(shù)據(jù)中積累的corner case困難且昂貴”的行業(yè)難題,毫末將爆火的三維重建NeRF技術(shù)應(yīng)用在自動(dòng)駕駛場景重建和數(shù)據(jù)生成中,它通過改變視角、光照、紋理材質(zhì)的方法,生成高真實(shí)感數(shù)據(jù),實(shí)現(xiàn)以低成本獲取normal case,生成各種高成本corner case。3D重建大模型生成的數(shù)據(jù),不僅比傳統(tǒng)的人工顯式建模再渲染紋理的方法效果更好、成本更低,增加NeRF生成的數(shù)據(jù)后,還可將感知的錯(cuò)誤率降低30%以上。
第三,多模態(tài)互監(jiān)督大模型,能夠精準(zhǔn)識(shí)別異形障礙物,讓車輛“火眼金睛”。在成功實(shí)現(xiàn)車道線和常見障礙物的精準(zhǔn)檢測后,針對城市多種異形障礙物的穩(wěn)定檢測問題,毫末正在思考和探索更加通用的解決方案。多模態(tài)互監(jiān)督大模型引入了激光雷達(dá)作為視覺監(jiān)督信號,直接使用視頻數(shù)據(jù)來推理場景的通用結(jié)構(gòu)表達(dá)。通用結(jié)構(gòu)的檢測,可以很好地補(bǔ)充已有的語義障礙物檢測,有效提升自動(dòng)駕駛系統(tǒng)在城市復(fù)雜工況下的通過率。
第四,動(dòng)態(tài)環(huán)境大模型,可以精準(zhǔn)預(yù)測道路的拓?fù)潢P(guān)系,讓車輛始終行駛在正確的車道中。在重感知技術(shù)路線下,毫末為了將對高精地圖的依賴度降到最低,面臨著“道路拓?fù)浣Y(jié)構(gòu)實(shí)時(shí)推斷”的挑戰(zhàn)。為此,毫末在BEV(鳥瞰圖)的feature map(特征圖)基礎(chǔ)上,以標(biāo)精地圖作為引導(dǎo)信息,使用自回歸編解碼網(wǎng)絡(luò),將BEV特征,解碼為結(jié)構(gòu)化的拓?fù)潼c(diǎn)序列,實(shí)現(xiàn)車道拓?fù)漕A(yù)測,讓毫末的感知能力,能像人類一樣在標(biāo)準(zhǔn)地圖的導(dǎo)航提示下就可以實(shí)現(xiàn)對道路拓?fù)浣Y(jié)構(gòu)的實(shí)時(shí)推斷。毫末認(rèn)為,解決了路口問題實(shí)際就解決了大部分城市NOH問題,目前在保定、北京,毫末對于85%的路口拓?fù)渫茢鄿?zhǔn)確率高達(dá)95%。即便是非常復(fù)雜、非常不規(guī)則的路口,毫末也能準(zhǔn)確預(yù)測。
第五,人駕自監(jiān)督認(rèn)知大模型,掌握高水平司機(jī)的開車技法,讓駕駛決策更聰明。在探索“使用大量人駕數(shù)據(jù),直接訓(xùn)練模型做出擬人化決策”方面,毫末為了讓模型能夠?qū)W習(xí)到高水平司機(jī)的優(yōu)秀開車方法,全新引入了用戶真實(shí)的接管數(shù)據(jù),同時(shí)用RLHF(從人類反饋中強(qiáng)化學(xué)習(xí))思路先訓(xùn)練一個(gè)reward model(獎(jiǎng)勵(lì)模型)來挑選出更好的駕駛決策。通過這種方式,使毫末在掉頭、環(huán)島等公認(rèn)的困難場景中,通過率提升30%以上。這與AGI領(lǐng)域爆火的ChatGPT的思路相同,通過人類行為反饋來選出最優(yōu)答案。
MANA五大模型全面提升了毫末感知和認(rèn)知層面系統(tǒng)化的底層技術(shù)能力。“在五大模型助力下,MANA最新的車端感知架構(gòu),從過去分散的多個(gè)下游任務(wù)集成到了一起,形成一個(gè)更加端到端的架構(gòu),包括通用障礙物識(shí)別、局部路網(wǎng)、行為預(yù)測等任務(wù),毫末車端感知架構(gòu)實(shí)現(xiàn)了跨代升級。”顧維灝表示,這也意味著毫末的感知能力更強(qiáng),產(chǎn)品力更強(qiáng),產(chǎn)品可以通過快速迭代向全無人駕駛加速邁進(jìn)。
隨著毫末智算中心MANA OASIS的落地,數(shù)據(jù)智能體系MANA也實(shí)現(xiàn)了脫胎換骨的升級。在未來的日子里,不斷進(jìn)化的MANA作為毫末產(chǎn)品迭代的核心動(dòng)力,將持續(xù)助力毫末發(fā)揮核心技術(shù)優(yōu)勢,早日實(shí)現(xiàn)毫末“讓機(jī)器智能移動(dòng),給生活更多美好”的最新美好愿景。
文章內(nèi)容僅供閱讀,不構(gòu)成投資建議,請謹(jǐn)慎對待。投資者據(jù)此操作,風(fēng)險(xiǎn)自擔(dān)。
2024年的Adobe MAX 2024發(fā)布會(huì)上,Adobe推出了最新版本的Adobe Creative Cloud。
奧維云網(wǎng)(AVC)推總數(shù)據(jù)顯示,2024年1-9月明火炊具線上零售額94.2億元,同比增加3.1%,其中抖音渠道表現(xiàn)優(yōu)異,同比有14%的漲幅,傳統(tǒng)電商略有下滑,同比降低2.3%。
“以前都要去窗口辦,一套流程下來都要半個(gè)月了,現(xiàn)在方便多了!”打開“重慶公積金”微信小程序,按照提示流程提交相關(guān)材料,僅幾秒鐘,重慶市民曾某的賬戶就打進(jìn)了21600元。
華碩ProArt創(chuàng)藝27 Pro PA279CRV顯示器,憑借其優(yōu)秀的性能配置和精準(zhǔn)的色彩呈現(xiàn)能力,為您的創(chuàng)作工作帶來實(shí)質(zhì)性的幫助,雙十一期間低至2799元,性價(jià)比很高,簡直是創(chuàng)作者們的首選。
9月14日,2024全球工業(yè)互聯(lián)網(wǎng)大會(huì)——工業(yè)互聯(lián)網(wǎng)標(biāo)識(shí)解析專題論壇在沈陽成功舉辦。