下單前先比價(jià)不花冤枉錢 同款圖書京東價(jià)低于抖音6折日媒感慨中國電動(dòng)汽車/智駕遙遙領(lǐng)先:本田、日產(chǎn)、三菱合并也沒戲消委會(huì)吹風(fēng)機(jī)品質(zhì)檢測結(jié)果揭曉 徠芬獨(dú)占鰲頭 共話新質(zhì)營銷力,2024梅花數(shù)據(jù)峰會(huì)圓滿落幕索尼影像專業(yè)服務(wù) PRO Support 升級(jí),成為會(huì)員至少需注冊(cè) 2 臺(tái) α 全畫幅相機(jī)、3 支 G 大師鏡頭消息稱vivo加碼電池軍備競賽:6500mAh 旗艦機(jī)+7500mAh中端機(jī)寶馬M8雙門轎跑車明年年初將停產(chǎn),后續(xù)無2026款車型比亞迪:2025 款漢家族車型城市領(lǐng)航智駕功能開啟內(nèi)測雷神預(yù)告2025年首次出席CES 將發(fā)布三款不同技術(shù)原理智能眼鏡realme真我全球首發(fā)聯(lián)發(fā)科天璣 8400 耐玩戰(zhàn)神共創(chuàng)計(jì)劃iQOO Z9 Turbo長續(xù)航版手機(jī)被曝電池加大到6400mAh,搭驍龍 8s Gen 3處理器普及放緩 銷量大跌:曝保時(shí)捷將重新評(píng)估電動(dòng)汽車計(jì)劃來京東參與榮耀Magic7 RSR 保時(shí)捷設(shè)計(jì)預(yù)售 享365天只換不修國補(bǔ)期間電視迎來換機(jī)潮,最暢銷MiniLED品牌花落誰家?美團(tuán)旗下微信社群團(tuán)購業(yè)務(wù)“團(tuán)買買”宣布年底停運(yùn)消息稱微軟正與第三方廠商洽談,試圖合作推出Xbox游戲掌機(jī)設(shè)備在海外,要再造一個(gè)京東物流?消息稱蘋果正為AirPods開發(fā)多項(xiàng)健康功能,包括心率監(jiān)測和溫度感應(yīng)一加 Ace 5系列將搭載全新游戲助手:大幅提升游戲體驗(yàn)東芝全部業(yè)務(wù)實(shí)現(xiàn)盈利,退市裁員重組后終于賺錢
  • 首頁 > 產(chǎn)經(jīng)新聞?lì)l道 > 業(yè)界新聞

    元年科技攜AI-SaaS平臺(tái)研究成果亮相第五屆智能財(cái)務(wù)高峰論壇

    2022年12月16日 12:01:39   來源:中文科技資訊

      12月10日,由上海國家會(huì)計(jì)學(xué)院、元年科技等共同主辦的第五屆智能財(cái)務(wù)高峰論壇在上海國家會(huì)計(jì)學(xué)院召開。元年科技常務(wù)副總裁郝宇曉在“智能財(cái)務(wù)生態(tài)構(gòu)建與應(yīng)用探索”分論壇中分享了由元年研究院承接的課題《通用AI-SaaS設(shè)計(jì)器及其在智能財(cái)務(wù)中的應(yīng)用平臺(tái)研究》成果。

      隨著技術(shù)的不斷發(fā)展,人工智能逐漸覆蓋到企業(yè)財(cái)務(wù)管理的各個(gè)領(lǐng)域和各個(gè)方面,人工智能等創(chuàng)新技術(shù)加持下的智能財(cái)務(wù)越來越成為財(cái)務(wù)數(shù)字化轉(zhuǎn)型的主線,進(jìn)而推動(dòng)企業(yè)數(shù)字化轉(zhuǎn)型進(jìn)程。

      一、智能財(cái)務(wù)是當(dāng)前企業(yè)數(shù)字化轉(zhuǎn)型的突破口

      信息技術(shù)和人工智能已經(jīng)深刻地改變了人類的生活和工作方式,特別是人工智能技術(shù)的飛速進(jìn)步為企業(yè)的發(fā)展帶來了巨大機(jī)遇和挑戰(zhàn)。從發(fā)展戰(zhàn)略和商業(yè)模式的顛覆,到組織架構(gòu)和管理流程的再造,再到經(jīng)營方式和組織文化的重塑,在信息技術(shù)高速發(fā)展的背景下,變革已成為企業(yè)運(yùn)營的常態(tài)。國務(wù)院國資委在《關(guān)于中央企業(yè)加快建設(shè)世界一流財(cái)務(wù)管理體系的指導(dǎo)意見》中明確指出,世界一流企業(yè)需建成與其相匹配的世界一流財(cái)務(wù)管理體系,并提出建設(shè)世界一流財(cái)務(wù)管理體系的“1455”框架。數(shù)字化轉(zhuǎn)型是建設(shè)世界一流企業(yè)的必由之路,而財(cái)務(wù)數(shù)字化是建設(shè)世界一流企業(yè)的重要起點(diǎn)和必備基礎(chǔ),企業(yè)構(gòu)建世界一流財(cái)務(wù)管理體系應(yīng)當(dāng)以財(cái)務(wù)管理能力升級(jí)和財(cái)務(wù)數(shù)字化轉(zhuǎn)型為核心展開,如圖1。

      圖1 傳統(tǒng)財(cái)務(wù)智能的轉(zhuǎn)型體系

      在財(cái)務(wù)領(lǐng)域,隨著大智移云物等信息技術(shù)的出現(xiàn)和逐漸成熟,以人工智能為代表的新一代信息技術(shù)的發(fā)展給財(cái)務(wù)管理帶來了新的發(fā)展契機(jī)。按照上海國家會(huì)計(jì)學(xué)院院長劉勤教授的定義,智能財(cái)務(wù)是一種新型的財(cái)務(wù)管理模式,它基于先進(jìn)的財(cái)務(wù)管理理論、工具和方法,借助于智能機(jī)器(包括智能軟件和智能硬件)和人類財(cái)務(wù)專家共同組成的人機(jī)一體化混合智能系統(tǒng),通過人和機(jī)器的有機(jī)合作,去完成企業(yè)復(fù)雜的財(cái)務(wù)管理活動(dòng),并在管理中不斷擴(kuò)大、延伸和逐步取代部分人類財(cái)務(wù)專家的活動(dòng)。在這樣深刻變革下,傳統(tǒng)財(cái)務(wù)將面對(duì)一系列沖擊,財(cái)務(wù)管理領(lǐng)域的智能水平需要不斷拓展和提升。

      二、智能財(cái)務(wù)的場景、機(jī)遇和挑戰(zhàn)

      隨著人工智能技術(shù)的發(fā)展,智能財(cái)務(wù)由單一的費(fèi)用管理向基于全業(yè)務(wù)過程的全面管控轉(zhuǎn)變。并逐步拓展到財(cái)務(wù)管理的各職能領(lǐng)域。元年科技按照各財(cái)務(wù)職能下的具體事項(xiàng),依據(jù)事務(wù)性的、基于規(guī)則的、標(biāo)準(zhǔn)化的、具有可擴(kuò)展性的等評(píng)價(jià)標(biāo)準(zhǔn),為智能應(yīng)用在財(cái)務(wù)管理中找到適宜的應(yīng)用場景,如圖2和圖2續(xù)。

      圖2 智能財(cái)務(wù)中AI應(yīng)用場景分析

      圖2續(xù) 智能財(cái)務(wù)中AI應(yīng)用場景分析

      分析認(rèn)為,智能應(yīng)用可以深入到企業(yè)財(cái)務(wù)管理的眾多環(huán)節(jié)中,同時(shí)結(jié)合不同的應(yīng)用場景,構(gòu)造不同的AI能力的組合。對(duì)數(shù)據(jù)的分析是AI理解企業(yè)業(yè)務(wù)的關(guān)鍵所在,數(shù)據(jù)分析預(yù)測、結(jié)構(gòu)化數(shù)據(jù)的提取、文檔/單據(jù)的分類意圖識(shí)別、多模態(tài)數(shù)據(jù)的對(duì)齊、結(jié)構(gòu)化知識(shí)的檢索和分析、流程自動(dòng)化等智能技術(shù),在不同的場景中的組合,形成業(yè)務(wù)側(cè)的智能化能力。

      圖3 智能財(cái)務(wù)場景與AI能力對(duì)應(yīng)

      但是如何在具體場景中去落實(shí)這些智能應(yīng)用,面臨著以下幾個(gè)難點(diǎn)(圖4):

      1)人工智能領(lǐng)域的智能化程度不高,主要還是使用OCR/RPA等感知智能及少量的、標(biāo)準(zhǔn)化的AI定制,認(rèn)知智能級(jí)的應(yīng)用還缺乏有生動(dòng)有力的例子。

      2)AI落地的難度比較高,AI的落地實(shí)施,需要企業(yè)各部門甚至外部公司的協(xié)作。研發(fā)難度大、周期長、成本高,同時(shí)結(jié)果不確定,在很大程度上限制了人工智能在財(cái)務(wù)領(lǐng)域的深度應(yīng)用。

      3)財(cái)務(wù)管理領(lǐng)域的智能應(yīng)用最終需要支撐決策和分析,但AI傳統(tǒng)上是一個(gè)技術(shù)黑箱,很難看到其中各個(gè)要素之間的因果聯(lián)系。尤其是當(dāng)其展示的結(jié)果與常識(shí)相悖的時(shí)候,就會(huì)對(duì)決策形成巨大的挑戰(zhàn)。

      圖4 智能財(cái)務(wù)應(yīng)用的難點(diǎn)與痛點(diǎn)

      因此,在AI的加持下,智能財(cái)務(wù)的發(fā)展方向應(yīng)該是超越RPA的,朝著更多的認(rèn)知智能和決策智能的方向發(fā)展。因此,如何高效、低成本、清晰地去賦能AI場景,正是企業(yè)所關(guān)心的問題。其中一個(gè)關(guān)鍵方法就是將標(biāo)準(zhǔn)化和重復(fù)性的工作用工程進(jìn)行封裝,使得AI應(yīng)用的研發(fā)和落地快捷、高效、無門檻,企業(yè)入手智能轉(zhuǎn)型的意愿就會(huì)更強(qiáng),手段也更加人性化。

      三、智能財(cái)務(wù)轉(zhuǎn)型需要?jiǎng)?chuàng)新的AI平臺(tái)

      圖5 Gartner2022年頂級(jí)戰(zhàn)略技術(shù)趨勢(shì)

      數(shù)字化企業(yè)數(shù)字化財(cái)務(wù)數(shù)字化轉(zhuǎn)型,催生了AI在財(cái)務(wù)管理場景中的應(yīng)用。本質(zhì)上,對(duì)數(shù)據(jù)的理解是連接業(yè)務(wù)場景到問題解決的關(guān)鍵一環(huán),我們希望有一套人工智能的工具來解決這個(gè)問題。一方面,Gartner在2022年發(fā)布的戰(zhàn)略技術(shù)趨勢(shì)的三大主題,其中涉及AI及其工程化的技術(shù)方向占到8/11項(xiàng)(圖5),融合了這些戰(zhàn)略技術(shù)趨勢(shì)的一站式AI中臺(tái)方案,已經(jīng)成為一種極具吸引力的方案。另一方面,《AI 中臺(tái)白皮書(2021年)》指出AI中臺(tái)是實(shí)現(xiàn)AI技術(shù)在各行業(yè)中快速研發(fā)、共享復(fù)用和部署管理的智能化底座和關(guān)鍵基礎(chǔ)設(shè)施。隨著變革的深入,AI中臺(tái)會(huì)從現(xiàn)階段的工具平臺(tái),在長期會(huì)成為衡量企業(yè)發(fā)展?jié)摿统砷L價(jià)值的核心競爭力。

      因此,AI技術(shù)的深度應(yīng)用必須基于創(chuàng)新的工具平臺(tái),AI-SaaS平臺(tái)是AI中臺(tái)的一種新形態(tài),中臺(tái)的復(fù)用能力是為了提高業(yè)務(wù)發(fā)展效率,在中臺(tái)基礎(chǔ)上進(jìn)行SaaS產(chǎn)品封裝,面向市場提供服務(wù),屬于功能邊界清晰、適用場景廣泛、復(fù)用場景多的智能業(yè)務(wù)形態(tài),能夠幫助財(cái)務(wù)人員無感建模和專業(yè)人員深度定制建模。

      圖6 AI-SaaS平臺(tái)助力實(shí)現(xiàn)業(yè)務(wù)閉環(huán)

      我們期望在AI-SaaS平臺(tái)中使用AI模型的方式很簡單(圖6):模型生產(chǎn)過程就是業(yè)務(wù)人員基于業(yè)務(wù)理解,快速接入業(yè)務(wù)數(shù)據(jù),無感知地自助式建模;模型的消費(fèi)或者應(yīng)用過程,就是基于模型的結(jié)果預(yù)測和要素歸因,對(duì)業(yè)務(wù)要素的輸入形成業(yè)務(wù)判斷和反饋。

      四、元年AI-SaaS的架構(gòu)設(shè)計(jì)和關(guān)鍵能力

      圖7 元年AI-SaaS平臺(tái)架構(gòu)

      作為助力企業(yè)智能化轉(zhuǎn)型的新一代服務(wù)平臺(tái),元年AI-SaaS平臺(tái)旨在提供一站式AI模型生產(chǎn)和應(yīng)用平臺(tái)。因此在整體架構(gòu)上,從數(shù)據(jù)接入到AI模型訓(xùn)練部署,我們要做到讓企業(yè)快速接入,實(shí)現(xiàn)場景的智能化應(yīng)用。

      AI-SaaS通過數(shù)據(jù)層以數(shù)據(jù)倉庫的方式接入各種數(shù)據(jù)庫完成業(yè)務(wù)系統(tǒng)對(duì)接;AI應(yīng)用層,以RestAPI方式為智能財(cái)務(wù)提供各種場景化服務(wù),包括智能業(yè)績與決策、智能交易處理、智能關(guān)賬、合并和報(bào)告、智能資本與風(fēng)險(xiǎn)和智能監(jiān)督、治理與控制;AI-SaaS的核心則包括框架層、模型層和能力層構(gòu)成的能力引擎,覆蓋了以下關(guān)鍵能力:

      多種建模方式:覆蓋開箱即用組件到無代碼建模,再到定制化代碼建模的多種建模方式,滿足企業(yè)不同層次智能場景需求(圖8)。

      圖8 AI-SaaS平臺(tái)多種建模方式

      核心能力封裝為AutoML:用戶只需關(guān)注業(yè)務(wù)輸入和反饋,從業(yè)務(wù)建模到業(yè)務(wù)反饋快速完成業(yè)務(wù)閉環(huán)(圖9)。

      圖9 AutoML助力實(shí)現(xiàn)業(yè)務(wù)閉環(huán)

      業(yè)務(wù)因子的解釋性:AI-SaaS采用Shapley模型評(píng)估團(tuán)隊(duì)協(xié)作成員/業(yè)務(wù)因子的邊際貢獻(xiàn),為使用者提供決策的依據(jù)(圖10)。

      圖10 團(tuán)隊(duì)成員或因子的Shapley貢獻(xiàn)

      (圖片來源:https://clearcode.cc/blog/game-theory-attribution/)

      五、AI-SaaS在智能財(cái)務(wù)的應(yīng)用案例

      在企業(yè)內(nèi)部財(cái)務(wù)管理的相關(guān)場景中,我們把大場景分成了業(yè)績和決策,交易處理關(guān)賬與報(bào)告資本與風(fēng)險(xiǎn),以及合規(guī)、風(fēng)控和公司治理若干個(gè)模塊等等,每個(gè)模塊下再分解成為更小的場景。把不同智能工具結(jié)合在一起,就可以看到能力和場景之間或者技術(shù)和場景之間是有一定的關(guān)聯(lián)性和匹配度的。

      圖11 智能財(cái)務(wù)的需求場景

      我們針對(duì)智能財(cái)務(wù)場景做了一些通用建模場景的智能化探索和實(shí)踐,實(shí)現(xiàn)企業(yè)中多個(gè)業(yè)務(wù)場景的自動(dòng)化和智能化。下面我們舉兩個(gè)典型的財(cái)務(wù)場景的案例來說明,如何利用AI-SaaS建模來解決管理決策和業(yè)務(wù)操作兩種基本需求,實(shí)際上利用場景的組合可以做更多的擴(kuò)展,來支撐實(shí)際業(yè)務(wù)中的復(fù)雜財(cái)務(wù)場景。

      投資集團(tuán)債務(wù)風(fēng)險(xiǎn)管理:無代碼向?qū)Ы7绞?/strong>

      對(duì)于從事傳統(tǒng)公用事業(yè)的大型企業(yè)集團(tuán)而言,其涵蓋的行業(yè)面廣,具有資產(chǎn)重、投資回報(bào)率低、回報(bào)周期長的特點(diǎn)。面對(duì)該類型企業(yè),假設(shè)其經(jīng)營效率不變,則集團(tuán)收入規(guī)模的增長和資產(chǎn)規(guī)模的增長會(huì)形成較為固定的比例關(guān)系。再假設(shè)其外部權(quán)益籌資不足,僅靠自身留存來補(bǔ)充權(quán)益資本時(shí),集團(tuán)收入的增加,必然需要靠大量的舉債來進(jìn)行拉動(dòng)。

      因此,巨幅增長的債務(wù)一直是該類集團(tuán)的管理痛點(diǎn)。在擴(kuò)大公司規(guī)模的同時(shí),要時(shí)刻關(guān)注債務(wù)風(fēng)險(xiǎn)能否得到有效管控,防范各板塊實(shí)體子公司出現(xiàn)經(jīng)營風(fēng)險(xiǎn),滿足各級(jí)國資委的風(fēng)險(xiǎn)監(jiān)管要求。這對(duì)企業(yè)管理者提出了非常嚴(yán)峻的挑戰(zhàn)。

      近期市場上經(jīng)?吹降禺a(chǎn)公司頻頻爆雷,部分地方投資集團(tuán)的債期債券不能到期兌付等等。但是傳統(tǒng)的經(jīng)驗(yàn)數(shù)據(jù)都是個(gè)案,利用數(shù)據(jù)信息來做決策一定要看數(shù)據(jù)是否具有統(tǒng)計(jì)學(xué)意義。所以為了更科學(xué)更客觀的進(jìn)行風(fēng)險(xiǎn)評(píng)估,我們基于發(fā)債企業(yè)的公開數(shù)據(jù)構(gòu)建了風(fēng)險(xiǎn)評(píng)估的AI模型,數(shù)據(jù)中沒有違約的1461家,已經(jīng)出現(xiàn)違約的129家,把債務(wù)風(fēng)險(xiǎn)篩出來10個(gè)關(guān)鍵指標(biāo),比如說資產(chǎn)負(fù)債率、流動(dòng)比率、帶息負(fù)債等等,當(dāng)然也包括前端的經(jīng)營數(shù)據(jù)營業(yè)流等等,同時(shí)具有企業(yè)性質(zhì)、行業(yè)、財(cái)務(wù)狀態(tài)等相關(guān)的變量。下面的演示視頻可以看出,業(yè)務(wù)人員只需要5分鐘就可以把這個(gè)模型建好,建好之后我們就可以跑出一個(gè)結(jié)果。

      圖12 向?qū)Ы7绞街恍?分鐘完成建模

      從上面的視頻可以看出,AI模型展現(xiàn)了幾個(gè)結(jié)果:1)不同因素對(duì)債務(wù)風(fēng)險(xiǎn)的影響程度,以及整體的可解釋性的闡述,因子的邊際貢獻(xiàn)有多大;2)模擬預(yù)測可以預(yù)測單個(gè)公司的債務(wù)風(fēng)險(xiǎn),從而提前做出判斷或者干預(yù),化解重大債務(wù)風(fēng)險(xiǎn);3)建模過程無需通過IT人員參與,業(yè)務(wù)人員可以方便地得到模型輸出的業(yè)務(wù)解釋(圖12)。這樣,在清晰的業(yè)務(wù)邏輯下,可以更新數(shù)據(jù)持續(xù)更新AI模型,形成長效的管理判斷,傳達(dá)決策輸出到下屬公司和管理者,再根據(jù)債務(wù)風(fēng)險(xiǎn)采取優(yōu)化策略(圖13)。

      圖13 利用AI模型進(jìn)行風(fēng)險(xiǎn)管理

      應(yīng)收賬款認(rèn)領(lǐng):組件建模方式

      圖14 AI-SaaS中的組件建模流程

      應(yīng)收賬款認(rèn)領(lǐng),是一個(gè)典型的財(cái)務(wù)運(yùn)營場景。在企業(yè)實(shí)務(wù)中,客戶在對(duì)企業(yè)的回款備注中可能存在內(nèi)容的缺失(圖14)。例如,公司全稱為“元年科技股份有限公司”,但客戶回款時(shí),可能僅備注“元年”、“元年科技”、“元年公司”等字樣。因此無法通過簡單規(guī)則完成自動(dòng)認(rèn)領(lǐng),需要嵌入大量人工認(rèn)領(lǐng)的操作。但在AI中臺(tái)中,通過對(duì)客戶名稱、金額、日期等幾個(gè)特征的建模,在10分鐘之內(nèi)就可以完成組件建模到業(yè)務(wù)系統(tǒng)調(diào)用的流程,實(shí)現(xiàn)對(duì)收款流水自動(dòng)分解認(rèn)領(lǐng)。

      圖15 財(cái)務(wù)系統(tǒng)中應(yīng)收賬款的智能匹配

      AI的模型具有模糊識(shí)別的能力,可以方便地在系統(tǒng)中實(shí)現(xiàn)差異性臺(tái)賬的認(rèn)領(lǐng)(圖15),這就解決了傳統(tǒng)RPA必須是固定路徑、明確結(jié)果的強(qiáng)制要求。

      圖16 多種平臺(tái)的自動(dòng)化應(yīng)收認(rèn)領(lǐng)

      應(yīng)收認(rèn)領(lǐng)模型在不同的平臺(tái)上都可以實(shí)現(xiàn)自動(dòng)化,包括電商平臺(tái)、銀行承兌、網(wǎng)銀電匯和現(xiàn)金等。核心就是規(guī)則加AI認(rèn)領(lǐng)的模式(圖16),會(huì)形成一個(gè)人工智能的封裝好的應(yīng)用,極大提高工作效率。一家大型企業(yè)一個(gè)月的臺(tái)賬數(shù)量可能達(dá)到3000單,手工匹配一筆臺(tái)賬平均花費(fèi)2-3分鐘,規(guī)則加AI的方式只需要30秒-1分鐘,可以提高65-70%的效率,每月可節(jié)省150小時(shí)人工,實(shí)現(xiàn)顯著的降本提效。

      六 總結(jié)和展望

      通過上面的案例,AI中臺(tái)對(duì)于具體的業(yè)務(wù)應(yīng)用場景可以形成有效的支持,為了解決業(yè)務(wù)人員不懂技術(shù)的困擾,滿足業(yè)務(wù)部門的需求,我們通過將AI能力的產(chǎn)生和應(yīng)用封裝成了方便快捷的AI-SaaS平臺(tái),一方面實(shí)現(xiàn)了通過技術(shù)攻關(guān)實(shí)現(xiàn)了平臺(tái)的落地,一方面在智能財(cái)務(wù)領(lǐng)域進(jìn)行了實(shí)踐,獲得了一些經(jīng)驗(yàn):1)可以極大的提高我們的開發(fā)效率;2)在多種業(yè)務(wù)場景上實(shí)現(xiàn)模型復(fù)用,比如債務(wù)模型對(duì)所有的大型國有企業(yè)集團(tuán),包括對(duì)所有的國資委都可以使用;3)非侵入對(duì)接的設(shè)計(jì)對(duì)企業(yè)現(xiàn)有的系統(tǒng)沒有影響;4)模型既可以做歷史歸因,也能預(yù)測未來,在管理場景中形成雙向反饋的業(yè)務(wù)結(jié)果。

      圖17 AI-SaaS平臺(tái)三個(gè)維度的展望

      經(jīng)過一些財(cái)務(wù)實(shí)踐,我們認(rèn)為AI-SaaS形式的賦能對(duì)業(yè)務(wù)系統(tǒng)都非常有前景,未來AI-SaaS平臺(tái)會(huì)從技術(shù)維度、行業(yè)維度和財(cái)務(wù)領(lǐng)域維度上,做持續(xù)迭代和深度擴(kuò)展(圖17),方便企業(yè)用AI-SaaS的能力來補(bǔ)足自己的智能財(cái)務(wù)能力。在企業(yè)數(shù)字化轉(zhuǎn)型和財(cái)務(wù)數(shù)字化轉(zhuǎn)型大課題背景下,人工智能會(huì)開花結(jié)果、深度應(yīng)用,適應(yīng)企業(yè)內(nèi)部的不同的管理場景,無論是從領(lǐng)域的擴(kuò)展,行業(yè)的增加,還是技術(shù)的迭代,我們都希望將AI-SaaS平臺(tái)打造成企業(yè)轉(zhuǎn)型的利器。

      【參考文獻(xiàn)】

      1、AI 中臺(tái)白皮書(2021年)

      2、劉勤,常葉青,劉梅玲,呂洪雁.大智移云時(shí)代的會(huì)計(jì)信息化變革—第十三屆全國會(huì)計(jì)信息化學(xué)術(shù)年會(huì)主要觀點(diǎn)綜述.會(huì)計(jì)研究,2014(12):89-91

      3、韓向東.智能財(cái)務(wù)“未來”已來.新理財(cái),2017(12):52

      4、劉勤,楊寅. 智能財(cái)務(wù)的體系架構(gòu)、實(shí)現(xiàn)路徑和應(yīng)用趨勢(shì)探討, 管理會(huì)計(jì)研究

      5、可解釋AI發(fā)展報(bào)告2022——打開算法黑箱的理念與實(shí)踐,騰訊研究院、騰訊天衍實(shí)驗(yàn)室、騰訊優(yōu)圖實(shí)驗(yàn)室、騰訊AILab,2022

      6、Shapley, L. S. A value for n-person games. Contrib. [J]. Theor. Games 2, 307–317 (1953).

      7、Shapley貢獻(xiàn)的解釋Game Theory Attribution: The Model You've Probably Never Heard Of - Clearcode Blog

      文章內(nèi)容僅供閱讀,不構(gòu)成投資建議,請(qǐng)謹(jǐn)慎對(duì)待。投資者據(jù)此操作,風(fēng)險(xiǎn)自擔(dān)。

    [No. H001]
    分享到微信

    即時(shí)

    新聞

    明火炊具市場:三季度健康屬性貫穿全類目

    奧維云網(wǎng)(AVC)推總數(shù)據(jù)顯示,2024年1-9月明火炊具線上零售額94.2億元,同比增加3.1%,其中抖音渠道表現(xiàn)優(yōu)異,同比有14%的漲幅,傳統(tǒng)電商略有下滑,同比降低2.3%。

    企業(yè)IT

    重慶創(chuàng)新公積金應(yīng)用,“區(qū)塊鏈+政務(wù)服務(wù)”顯成效

    “以前都要去窗口辦,一套流程下來都要半個(gè)月了,現(xiàn)在方便多了!”打開“重慶公積金”微信小程序,按照提示流程提交相關(guān)材料,僅幾秒鐘,重慶市民曾某的賬戶就打進(jìn)了21600元。

    3C消費(fèi)

    華碩ProArt創(chuàng)藝27 Pro PA279CRV顯示器,高能實(shí)力,創(chuàng)

    華碩ProArt創(chuàng)藝27 Pro PA279CRV顯示器,憑借其優(yōu)秀的性能配置和精準(zhǔn)的色彩呈現(xiàn)能力,為您的創(chuàng)作工作帶來實(shí)質(zhì)性的幫助,雙十一期間低至2799元,性價(jià)比很高,簡直是創(chuàng)作者們的首選。

    研究

    中國信通院羅松:深度解讀《工業(yè)互聯(lián)網(wǎng)標(biāo)識(shí)解析體系

    9月14日,2024全球工業(yè)互聯(lián)網(wǎng)大會(huì)——工業(yè)互聯(lián)網(wǎng)標(biāo)識(shí)解析專題論壇在沈陽成功舉辦。