芯片工程師展示了一個高度專業(yè)化的行業(yè)如何使用 NVIDIA NeMo 來定制大語言模型,以獲得競爭優(yōu)勢。
10 月 31 日,NVIDIA 發(fā)布的一篇研究論文描述了生成式 AI 如何助力芯片設(shè)計,后者是當(dāng)今最復(fù)雜的工程工作之一。
這項(xiàng)工作展示了高度專業(yè)化領(lǐng)域的公司如何利用內(nèi)部數(shù)據(jù)訓(xùn)練大語言模型,從而開發(fā)提高生產(chǎn)力的 AI 助手。
像半導(dǎo)體設(shè)計這樣如此具有挑戰(zhàn)性的工作并不多見。在顯微鏡下,NVIDIA H100 Tensor Core GPU(上圖)這樣最先進(jìn)的芯片看起來就像一個精心規(guī)劃的大都市,由數(shù)百億個晶體管組成,把它們連接起來的線比人的頭發(fā)絲還細(xì) 1 萬倍。
多個工程團(tuán)隊(duì)進(jìn)行協(xié)作,需要長達(dá)兩年的時間才能構(gòu)建出這樣一個數(shù)字化超級大都市。
一些小組定義芯片的整體架構(gòu),一些小組負(fù)責(zé)各種超小型電路的設(shè)計與布局,還有一些小組負(fù)責(zé)測試工作。每項(xiàng)工作都需要采取專門的方法、軟件程序和計算機(jī)語言。
大語言模型廣闊的前景
該論文的主要作者、NVIDIA 研究總監(jiān) Mark Ren 表示:“我相信,隨著時間的推移,大語言模型將全面助力所有流程。”
在同日舉行的國際計算機(jī)輔助設(shè)計會議上,NVIDIA 首席科學(xué)家 Bill Dally 發(fā)表主題演講并公布了這篇論文。這個年度盛會每年都會吸引數(shù)百名電子設(shè)計自動化(EDA)領(lǐng)域的工程師參加。
此次會議在舊金山舉行。Dally 在會上表示:“這標(biāo)志著在將大語言模型用于復(fù)雜的半導(dǎo)體設(shè)計方面邁出了重要一步。這項(xiàng)工作表明,即使高度專業(yè)化的領(lǐng)域也可以利用內(nèi)部數(shù)據(jù)來訓(xùn)練極具價值的生成式 AI 模型。”
ChipNeMo 浮出水面
這篇論文詳細(xì)介紹了 NVIDIA 工程師如何創(chuàng)建名為 ChipNeMo 的定制大語言模型,供內(nèi)部使用。該模型使用公司內(nèi)部數(shù)據(jù)進(jìn)行訓(xùn)練并生成和優(yōu)化軟件,以更好地協(xié)助人類設(shè)計師。
Ren 在 EDA 領(lǐng)域從業(yè)超過 20 多年,他表示,從長遠(yuǎn)來看,工程師們希望生成式 AI 能夠用于芯片設(shè)計的各個階段,從而大幅提升整體生產(chǎn)力。
在針對可能的使用場景對 NVIDIA 工程師進(jìn)行調(diào)研之后,研究團(tuán)隊(duì)一開始選擇了三個場景:聊天機(jī)器人、代碼生成器和分析工具。
初始用例
維護(hù)已知 bug 的更新描述需要耗費(fèi)大量時間,而上述分析工具中的后者能夠?qū)崿F(xiàn)此類任務(wù)的自動化,并已得到廣泛的采用。
一個聊天機(jī)器人原型可以回答有關(guān) GPU 架構(gòu)和設(shè)計的問題,并且已經(jīng)幫助許多工程師在早期測試中快速找到技術(shù)文檔。
代碼生成器將幫助設(shè)計者編寫芯片設(shè)計軟件。
一個正在開發(fā)中的代碼生成器(如上圖所演示)已經(jīng)用兩種芯片設(shè)計師專用語言創(chuàng)建了大約 10-20 行軟件的片段。它將與現(xiàn)有工具集成,為工程師們提供一個方便的助手來進(jìn)行設(shè)計。
使用 NVIDIA NeMo 定制 AI 模型
這篇論文主要關(guān)注該團(tuán)隊(duì)收集設(shè)計數(shù)據(jù)并使用這些數(shù)據(jù)創(chuàng)建專門的生成式 AI 模型,這個過程可以移植到任何行業(yè)。
作為起點(diǎn),該團(tuán)隊(duì)選擇了一個基礎(chǔ)模型,并使用 NVIDIA NeMo 對其進(jìn)行了定制。作為 NVIDIA AI Enterprise 軟件平臺的一部分,NVIDIA NeMo 是一個用于構(gòu)建、定制和部署生成式 AI 模型的框架。定的 NeMo 模型具有 430 億個參數(shù),這衡量了它對模式的理解力。它使用超過一萬億個文本和軟件中的 token、單詞和符號進(jìn)行了訓(xùn)練。
ChipNeMo 提供了一個技術(shù)團(tuán)隊(duì)如何用自己的數(shù)據(jù)改進(jìn)預(yù)訓(xùn)練模型的示例。
然后,該團(tuán)隊(duì)在兩輪訓(xùn)練中完善了該模型。第一輪使用了相當(dāng)于大約 240 億個 token 的內(nèi)部設(shè)計數(shù)據(jù),第二輪使用了約 13 萬個對話和設(shè)計示例。
這項(xiàng)工作是半導(dǎo)體行業(yè)進(jìn)行生成式 AI 概念研究和印證的幾個例子之一, 這一趨勢剛剛開始在實(shí)驗(yàn)室興起。
分享經(jīng)驗(yàn)
Ren 的團(tuán)隊(duì)學(xué)到的一個最重要的經(jīng)驗(yàn)就是定制大語言模型的重要性。
在芯片設(shè)計任務(wù)中,只有 130 億個參數(shù)的定制 ChipNeMo 模型的性能達(dá)到或超過了更大的通用大語言模型(例如包含 700 億個參數(shù)的 LLaMA2)。在某些使用場景中,ChipNeMo 模型甚至好很多。
他補(bǔ)充道,在這一過程中,用戶需要謹(jǐn)慎地確定他們收集什么數(shù)據(jù)以及如何清理數(shù)據(jù)以用于訓(xùn)練。
最后,Ren 建議用戶及時了解可以加快和簡化工作的最新工具。
NVIDIA Research 在全球各地?fù)碛袛?shù)百名科學(xué)家和工程師,專注于 AI、計算機(jī)圖形學(xué)、計算機(jī)視覺、自動駕駛汽車、機(jī)器人學(xué)等領(lǐng)域。近期的其它半導(dǎo)體項(xiàng)目包括使用 AI 設(shè)計更小、更快的電路,以及優(yōu)化大型模塊的布局。
希望構(gòu)建自己的定制大語言模型的企業(yè)現(xiàn)在可以從使用 GitHub 和 NVIDIA NGC 目錄中的 NeMo 框架開始。
文章內(nèi)容僅供閱讀,不構(gòu)成投資建議,請謹(jǐn)慎對待。投資者據(jù)此操作,風(fēng)險自擔(dān)。
2024年的Adobe MAX 2024發(fā)布會上,Adobe推出了最新版本的Adobe Creative Cloud。
奧維云網(wǎng)(AVC)推總數(shù)據(jù)顯示,2024年1-9月明火炊具線上零售額94.2億元,同比增加3.1%,其中抖音渠道表現(xiàn)優(yōu)異,同比有14%的漲幅,傳統(tǒng)電商略有下滑,同比降低2.3%。
“以前都要去窗口辦,一套流程下來都要半個月了,現(xiàn)在方便多了!”打開“重慶公積金”微信小程序,按照提示流程提交相關(guān)材料,僅幾秒鐘,重慶市民曾某的賬戶就打進(jìn)了21600元。
華碩ProArt創(chuàng)藝27 Pro PA279CRV顯示器,憑借其優(yōu)秀的性能配置和精準(zhǔn)的色彩呈現(xiàn)能力,為您的創(chuàng)作工作帶來實(shí)質(zhì)性的幫助,雙十一期間低至2799元,性價比很高,簡直是創(chuàng)作者們的首選。
9月14日,2024全球工業(yè)互聯(lián)網(wǎng)大會——工業(yè)互聯(lián)網(wǎng)標(biāo)識解析專題論壇在沈陽成功舉辦。